
ÚLOHY MFO 

Školská fyzika zvláštní číslo/2006 19 verze ZŠ+SŠ 

Úlohy 36. Mezinárodní fyzikální olympiády 

Ve dnech 3.–12. července 2005 se ve Špa-
nělsku, ve městě Salamanca, uskutečnila 
36. Mezinárodní fyzikální olympiáda.  

Pod vedením Prof. RNDr. Ivo Volfa, CSc. 
a Prof. Ing. Bohumila Vybírala, CSc. získal 
Pavel Motloch stříbrnou medaili a ostatní 
účastníci (Petr Houštěk, Petr Morávek, Pavel 
Kučera a Petr Čermák) získali čestné uznání. 

Vyzkoušejte si řešení úloh 36. Mezinárod-
ní fyzikální olympiády: 

Th 1 – AN ILL FATED SATELLITE 
The most frequent orbital manoeuvres performed 

by spacecraft consist of velocity variations along the 
direction of flight, namely accelerations to reach 
higher orbits or brakings done to initiate re-entering 
in the atmosphere. In this problem we will study the 
orbital variations when the engine thrust is applied 
in a radial direction.  

To obtain numerical values use: Earth radius 
66.37 10 mTR = ⋅ , Earth surface gravity 

29.81m/sg = , and take the length of the sidereal 
day to be 0 24.0hT = . 

We consider a geosynchronous1 communications 
satellite of mass m placed in an equatorial circular 
orbit of radius 0r . These satellites have an “apogee engine” which provides the tangential 
thrusts needed to reach the final orbit. 

Marks are indicated at the beginning of each subquestion, in parenthesis. 

Question 1 

1.1 (0.3) Compute the numerical value of 0r . 

1.2 (0.3+0.1) Give the analytical expression of the velocity 0v  of the satellite as a function 
of g, TR , and 0r , and calculate its numerical value. 

1.3 (0.4+0.4) Obtain the expressions of its angular momentum 0L  and mechanical energy 

0E , as functions of 0v , m, g and TR . 

                                                           
1 Its revolution period is 0T . 

Image: ESA 
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Once this geosynchronous circular orbit has been reached (see Fig-
ure F-1), the satellite has been stabilised in the desired location, and is 
being readied to do its work, an error by the ground controllers causes 
the apogee engine to be fired again. The thrust happens to be directed 
towards the Earth and, despite the quick reaction of the ground crew 
to shut the engine off, an unwanted velocity variation v∆  is imparted 
on the satellite. We characterize this boost by the parameter 

0/v vβ = ∆ . The duration of the engine burn is always negligible with 
respect to any other orbital times, so that it can be considered as in-
stantaneous.  

Question 2 

Suppose 1β < . 
2.1 (0.4+0.5) Determine the parameters of the new orbit2, semi-latus-rectum l  and eccen-

tricity ε , in terms of 0r  and β.  

2.2 (1.0) Calculate the angle α between the major axis of the new orbit and the position 
vector at the accidental misfire. 

2.3 (1.0+0.2) Give the analytical expressions of the perigee minr  and apogee maxr  distances 
to the Earth centre, as functions of 0r  and β, and calculate their numerical values for 

1/ 4β = . 

2.4 (0.5+0.2) Determine the period of the new orbit, T, as a function of 0T  and β, and calcu-
late its numerical value for 1/ 4β = . 

Question 3 

3.1 (0.5) Calculate the minimum boost parameter, escβ , needed for the satellite to escape 
Earth gravity. 

3.2 (1.0) Determine in this case the closest approach of the satellite to the Earth centre in 
the new trajectory, minr′ , as a function of 0r . 

Question 4 

Suppose escβ β> . 

4.1 (1.0) Determine the residual velocity at the infinity, v∞ , as a 
function of 0v  and β. 

4.2 (1.0) Obtain the “impact parameter” b of the asymptotic escape 
direction in terms of 0r  and β. (See Figure F-2). 

4.3 (1.0+0.2) Determine the angle φ  of the asymptotic escape di-
rection in terms of β. Calculate its numerical value for 

3
2 escβ β= . 

                                                           
2 See the “hint”. 
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HINT 
Under the action of central forces obeying the inverse-square 
law, bodies follow trajectories described by ellipses, parabolas 
or hyperbolas. In the approximation m << M the gravitating 
mass M is at one of the focuses. Taking the origin at this focus, 
the general polar equation of these curves can be written as (see 
Figure F-3) 

( )
1 cos

lr θ
ε θ

=
−

 

where l is a positive constant named the semi-latus-rectum and 
ε  is the eccentricity of the curve. In terms of constants of mo-
tion: 

2
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where G is the Newton constant, L is the modulus of the angular momentum of the orbiting 
mass, with respect to the origin, and E is its mechanical energy, with zero potential energy at 
infinity. 

We may have the following cases: 
i) If 0 1ε≤ < , the curve is an ellipse (circumference for 0ε = ).  

ii) If 1ε = , the curve is a parabola. 

iii) If 1ε > , the curve is a hyperbola.  

Th 1 − ANSWER SHEET 

Question Basic formulas 
and ideas used Analytical results Numerical results Marking 

guideline 

1.1   0r =  0.3 

1.2  0v =  0v =  0.4 

1.3  
0L =  

 
l =  

 
0.4 
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2.4  T =  T =  0.7 

3.1   escβ =  0.5 

3.2  minr′ =   1.0 

4.1  v∞ =   1.0 

4.2  b =   1.0 

4.3  φ =  φ =  1.2 

Th 2 – ABSOLUTE MEASUREMENTS OF ELECTRICAL QUANTITIES 
The technological and scientific transformations underwent during the XIX century produced 
a compelling need of universally accepted standards for the electrical quantities. It was 
thought the new absolute units should only rely on the standards of length, mass and time es-
tablished after the French Revolution. An intensive experimental work to settle the values of 
these units was developed from 1861 until 1912. We propose here three case studies. 
Marks are indicated at the beginning of each subquestion, in parenthesis. 

Determination of the ohm (Kelvin) 

A closed circular coil of N turns, radius a and total resistance R is rotated with uniform angu-
lar velocity ω about a vertical diameter in a horizontal magnetic field 0 0B B i=

G G
. 

1. (0.5+1.0) Compute the electromotive force ε induced in the coil, and also the mean power3 
P  required for maintaining the coil in motion. Neglect the coil self inductance. 

A small magnetic needle is placed at the center of the coil, as shown in Figure F-1. It is free to 
turn slowly around the Z axis in a horizontal plane, but it cannot follow the rapid rotation of 
the coil. 

                                                           
3 The mean value X  of a quantity ( )tX  in a periodic system of period T is ( )∫=

T
dttX

T
X
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2. (2.0) Once the stationary regime is reached, the needle will set at a 
direction making a small angle θ with 0B

G
. Compute the resistance R 

of the coil in terms of this angle and the other parameters of the 
system. 

Lord Kelvin used this method in the 1860s to set the absolute standard 
for the ohm. To avoid the rotating coil, Lorenz devised an alternative 
method used by Lord Rayleigh and Ms. Sidgwick, that we analyze in 
the next paragraphs. 

 

Determination of the ohm (Rayleigh, Sidgwick). 

The experimental setup is shown in Figure F-2. It consists of two identical metal disks D and 
D' of radius b mounted on the conducting shaft SS'. A motor rotates the set at an angular ve-
locity ω , which can be adjusted for measuring R. Two identical coils C and C' (of radius a 
and with N turns each) surround the disks. They are connected in such a form that the current 
I flows through them in opposite directions. The whole apparatus serves to measure the resis-
tance R.  

3.  (2.0) Assume that the current I 
flowing through the coils C and 
C' creates a uniform magnetic 
field B around D and D', equal to 
the one at the centre of the coil. 
Compute1 the electromotive 
force ε induced between the rims 
1 and 4, assuming that the dis-
tance between the coils is much 
larger than the radius of the coils 
and that a >> b. 

The disks are connected to the cir-
cuit by brush contacts at their rims 1 
and 4. The galvanometer G detects the flow of current through the circuit 1-2-3-4. 

4. (0.5) The resistance R is measured when G reads zero. Give R in terms of the physical pa-
rameters of the system.  

Determination of the ampere 
Passing a current through two conductors and measuring the force between them provides an 
absolute determination of the current itself. The “Current Balance” designed by Lord Kelvin 
in 1882 exploits this method. It consists of six identical single turn coils C1… C6 of radius a, 
connected in series. As shown in Figure F-3, the fixed coils C1, C3, C4, and C6 are on two 
horizontal planes separated by a small distance 2h. The coils C2 and C5 are carried on balance 
arms of length d, and they are, in equilibrium, equidistant from both planes.  

The current I flows through the various coils in such a direction that the magnetic force on 
C2 is upwards while that on C5 is downwards. A mass m at a distance x from the fulcrum O is 
required to restore the balance to the equilibrium position described above when the current 
flows through the circuit. 
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5. (1.0) Compute the force F on C2 due to the magnetic interaction with C1. For simplicity as-
sume that the force per unit length is the one corresponding to two long, straight wires car-
rying parallel currents.  

6. (1.0) The current I is measured when the balance is in equilibrium. Give the value of I in 
terms of the physical parameters of the system. The dimensions of the apparatus are such 
that we can neglect the mutual effects of the coils on the left and on the right. 

Let M be the mass of the balance (except for m and the hanging parts), G its centre of mass 
and l the distance OG. 

7. (2.0) The balance equilibrium is stable against deviations producing small changes zδ  in 
the height of C2 and zδ−  in C5. Compute4 the maximum value maxzδ  so that the balance 
still returns towards the equilibrium position when it is released. 

Th 2 – ANSWER SHEET 

Question Basic formulas used Analytical results 
Marking 
guideline 

1  
ε = 

P =  

 

1.5 

                                                           
4 Consider that the coils centres remain approximately aligned.  

Use the approximations  21
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Th 3 – NEUTRONS IN A GRAVITATIONAL FIELD 
In the familiar classical world, an elastic bouncing ball on the Earth’s surface is an ideal ex-
ample for perpetual motion. The ball is trapped: it can not go below the surface or above its 
turning point. It will remain bounded in this state, turning down and bouncing up once and 
again, forever. Only air drag or inelastic bounces could stop the process and will be ignored in 
the following. 

A group of physicists from the Institute Laue - Langevin in Grenoble reported5 in 2002 ex-
perimental evidence on the behaviour of neutrons in the gravitational field of the Earth. In the 
experiment, neutrons moving to the right were allowed to fall towards a horizontal crystal sur-
face acting as a neutron mirror, where they bounced back elastically up to the initial height 
once and again.  

                                                           
5  V. V. Nesvizhevsky et al. “Quantum states of neutrons in the Earth’s gravitational field.” Nature, 415 (2002) 

297. Phys Rev D 67, 102002 (2003). 
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The setup of the experiment is sketched in Figure F-1. It consists of the opening W, the 
neutron mirror M (at height z = 0), the neutron absorber A (at height z = H and with length L) 
and the neutron detector D. The beam of neutrons flies with constant horizontal velocity com-
ponent vx from W to D through the cavity between A and M. All the neutrons that reach the 
surface of A are absorbed and disappear from the experiment. Those that reach the surface of 
M are reflected elastically. The detector D counts the transmission rate N(H), that is, the total 
number of neutrons that reach D per unit time. 

g D

M 

A 

W 

X
Z vx vz

z 
H 

L 
A

M

D

F-1  

Marks are indicated at the beginning of each subquestion, in parenthesis. 

The neutrons enter the cavity with a wide range of positive and negative vertical velocities, vz. 
Once in the cavity, they fly between the mirror below and the absorber above.  

1. (1.5) Compute classically the range of vertical velocities vz(z) of the neutrons that, entering 
at a height z, can arrive at the detector D. Assume that L is much larger than any other 
length in the problem. 

2. (1.5) Calculate classically the minimum length Lc of the cavity to ensure that all neutrons 
outside the previous velocity range, regardless of the values of z, are absorbed by A. Use 
vx = 10 m s-1 and H = 50 µm. 

The neutron transmission rate N(H) is measured at D. We expect that it increases monotoni-
cally with H.  

3. (2.5) Compute the classical rate Nc(H) assuming that neutrons arrive at the cavity with ver-
tical velocity vz and at height z, being all the values of vz and z equally probable. Give the 
answer in terms of ρ, the constant number of neutrons per unit time, per unit vertical veloc-
ity, per unit height, that enter the cavity with vertical velocity vz and at height z. 

The experimental results obtained by the 
Grenoble group disagree with the above classical 
predictions, showing instead that the value of N(H) 
experiences sharp increases when H crosses some 
critical heights H1, H2 … (Figure F-2 shows a 
sketch). In other words, the experiment showed 
that the vertical motion of neutrons bouncing on 
the mirror is quantized. In the language that Bohr 
and Sommerfeld used to obtain the energy levels 
of the hydrogen atom, this can be written as: “The 
action S of these neutrons along the vertical direction is an integer multiple of the Planck action 
constant h”. Here S is given by 

( ) , 1, 2, 3 ...zS p z dz n h n= = =∫  (Bohr-Sommerfeld quantization rule) 

H
H1  

   

F-2  
H2  
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where pz is the vertical component of the classical momentum, and the integral covers a whole 
bouncing cycle. Only neutrons with these values of S are allowed in the cavity. 

4. (2.5) Compute the turning heights Hn and energy levels En (associated to the vertical mo-
tion) using the Bohr–Sommerfeld quantization condition. Give the numerical result for H1 
in µm and for E1 in eV.  

The uniform initial distribution ρ of neutrons at the entrance changes, during the flight 
through a long cavity, into the step-like distribution detected at D (see Figure F-2). From now 
on, we consider for simplicity the case of a long cavity with H < H2. Classically, all neutrons 
with energies in the range considered in question 1 were allowed through it, while quantum 
mechanically only neutrons in the energy level E1 are permitted. According to the time-energy 
Heisenberg uncertainty principle, this reshuffling requires a minimum time of flight. The un-
certainty of the vertical motion energy will be significant if the cavity length is small. This 
phenomenon will give rise to the widening of the energy levels. 

5. (2.0) Estimate the minimum time of flight tq and the minimum length Lq of the cavity needed 
to observe the first sharp increase in the number of neutrons at D. Use vx = 10 m s-1. 

Data:  Planck action constant 
-34 6.63 10  J sh = ⋅  

Speed of light in vacuum 8 -1 3.00  10  m sc = ⋅  
Elementary charge -191.60  10  Ce = ⋅  
Neutron mass -27 1.67  10  kgM = ⋅  
Acceleration of gravity on Earth g = 9.81 m s-2 

If necessary, use the expression: ( ) ( )3/ 2
1/ 2 2 1

1
3
x

x dx
−

− = −∫  

Th 3 – ANSWER SHEET 

Ques-
tion Basic formulas used Analytical results Numerical re-

sults 
Marking 
guideline

1  ( )zv z≤ ≤   1.5 

2  Lc = Lc = 1.5 

3  Nc(H)=  2.5 

4 
 Hn = 

En = 

H1=             µm 

E1 =              eV 

 

2.5 
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5  tq = 

Lq = 

tq = 

Lq = 

 

2.0 

PLANCK’S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP 
In 1900 Planck introduced the hypothesis that light is emitted by matter in the form of quanta 
of energy hν. In 1905 Einstein extended this idea proposing that once emitted, the energy 
quantum remains intact as a quantum of light (that later received the name photon). Ordinary 
light is composed of an enormous number of photons on each wave front. They remain 
masked in the wave, just as individual atoms are in bulk matter, but h – the Planck’s constant 
– reveals their presence. The purpose of this experiment is to measure Planck's constant. 

A body not only emits, it can also absorb radiation arriving 
from outside. Black body is the name given to a body that can 
absorb all radiation incident upon it, for any wavelength. It is 
a full radiator. Referring to electromagnetic radiation, black 
bodies absorb everything, reflect nothing, and emit every-
thing. Real bodies are not completely black; the ratio between 
the energy emitted by a body and the one that would be emit-
ted by a black body at the same temperature, is called emis-
sivity, ε, usually depending on the wavelength. 

Planck found that the power density radiated by a body at ab-
solute temperature T in the form of electromagnetic radiation 
of wavelength λ can be written as  

 
( )2

1
/5 1c T

cu
e

λ λ
ε

λ
=

−
 (1) 

where c1 and c2 are constants. In this question we ask you to 
determine c2 experimentally, which is proportional to h. 

For emission at small λ, far at left of the maxima in Figure 
F-1, it is permissible to drop the -1 from the denominator of 
Eq. (1), that reduces to  

 
2

1
/5 c T

cu
eλ λε

λ
=  (2) 

The basic elements of this experimental question are 
sketched in Fig. F-2.  

• The emitter body is the tungsten filament of an incan-
descent lamp A that emits a wide range of λ’s, and whose luminosity can be varied. 

• The test tube B contains a liquid filter that only transmits a thin band of the visible spec-
trum around a value λ0 (see Fig. F-3). More information on the filter properties will be 
found in page 5. 
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• Finally, the transmitted radiation falls upon a photo re-
sistor C (also known as LDR, the acronym of Light De-
pendent Resistor). Some properties of the LDR will be 
described in page 6. 

The LDR resistance R depends on its illumination, E, which 
is proportional to the filament power energy density 

0

0

E u
R u

R E

λ γ
λγ
−

−

∝ ⎫⎪ ⇒ ∝⎬
∝ ⎪⎭

 

where the dimensionless parameter γ is a property of the LDR 
that will be determined in the experiment. For this setup we finally obtain a relation between 
the LDR resistance R and the filament temperature T  
 2 0/

3
c TR c e γ λ=  (3) 

that we will use in page 6. In this relation c3 is an unknown proportionality constant. By 
measuring R as a function on T one can obtain c2, the objective of this experimental question. 

DESCRIPTION OF THE APPARATUS 
The components of the apparatus are shown in Fig. F-4, which also includes some indications 
for its setup. Check now that all the components are available, but refrain for making any ma-
nipulation on them until reading the instructions in the next page. 

 

F-3 

uλ 

 λ λ0 

 

F-4 

1 

2 

3 

6 

7 10 11 

4 

5 

8 9 13 12 

A V Ω 



Grausová, Vlachynská: Úlohy 36. Mezinárodní fyzikální olympiády 

Školská fyzika zvláštní číslo/2006 30 verze ZŠ+SŠ 

EQUIPMENT: 
1. Platform. It  has a disk on the top that holds a support  for the LDR, a support for the tu-

be and a support for an electric lamp of 12 V, 0.1 A. 
2. Protecting cover. 
3. 10 turns and 1 kΩ potentiometer. 
4. 12 V battery. 
5. Red and black wires with plugs at both ends to connect platform to potentiometer.  
6. Red and black wires with plugs at one end and sockets for the battery at the other end. 
7. Multimeter to work as ohmmeter.  
8. Multimeter to work as voltmeter.  
9. Multimeter to work as ammeter.  
10. Test tube with liquid filter. 
11. Stand for the test tube.  
12. Grey filter. 
13. Ruler. 

An abridged set of instructions for the use of multimeters, along with information on the 
least squares method, is provided in a separate page. 

SETTING UP THE EQUIPMENT 
Follow these instructions: 
• Carefully make the electric connections as indicated in Fig. F-4, but do not plug the 

wires 6 to the potentiometer.  

• By looking at Fig. F-5, follow the steps indicated below: 

1. Turn the potentiometer knob anticlockwise until reaching the end.  

2. Turn slowly the support for the test tube so that one of the lateral holes is in front of 
the lamp and the other in front of the LDR. 
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3. Bring the LDR nearer to the test tube support until making a light touch with its lateral 
hole. It is advisable to orient the LDR surface as indicated in Fig. F-5. 

4. Insert the test tube into its support. 

5. Put the cover onto the platform to protect from the outside light. Be sure to keep the 
LDR in total darkness for at least 10 minutes before starting the measurements of its 
resistance. This is a cautionary step, as the resistance value at darkness is not reached 
instantaneously.  

Task 1 
Draw in Answer Sheet 1 the complete electric circuits in the boxes and between the boxes, 
when the circuit is fully connected. Please, take into account the indications contained in Fig. 
F-4 to make the drawings. 

Measurement of the filament temperature 
The electric resistance RB of a conducting filament can be given as 

 B
lR
S

ρ=  (4) 

where ρ is the resistivity of the conductor, l is the length and S the cross section of the fila-
ment. 

This resistance depends on the temperature due to different causes such as: 
• Metal resistivity increases with temperature. For tungsten and for temperatures in the 

range 300 K to 3655 K, it can be given by the empirical expression, valid in SI units, 
 8 0.833.05 10T ρ= ⋅  (5) 

• Thermal dilatation modifies the filament’s length and section. However, its effects on 
the filament resistance will be negligible small in this experiment.  
From (4) and (5) and neglecting dilatations one gets  

 
0.83
BT a R=  (6) 

• Therefore, to get T it is necessary to determine a. This can be achieved by measuring 
the filament resistance RB,0 at ambient temperature T0. 

Task 2 
a)  Measure with the multimeter the ambient temperature T0.  
b)  It is not a good idea to use the ohmmeter to measure the filament resistance RB,0 at T0 be-

cause it introduces a small unknown current that increases the filament temperature. Inste-
ad, to find RB,0 connect the battery to the potentiometer and make a sufficient number of 
current readings for voltages from the lowest values attainable up to 1 V. (It will prove 
useful to make at least 15 readings below 100 mV.) At the end, leave the potentiometer in 
the initial position and disconnect one of the cables from battery to potentiometer.  
Find RB for each pair of values of V and I, translate these values into the Table for Task 
2,b) in the Answer Sheets. Indicate there the lowest voltage that you can experimentally at-
tain. Draw a graph and represent RB in the vertical axis against I.  

c)  After inspecting the graphics obtained at b), select an appropriate range of values to make a 
linear fit to the data suitable for extrapolating to the ordinate at the origin, RB,0. Write the 
selected values in the Table for Task 2, c) in the Answer Sheets. Finally, obtain RB,0 and 
∆RB,0. 

d)  Compute the numerical values of a and ∆a for RB,0 in Ω and T0 in K using (6). 
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OPTICAL PROPERTIES OF THE FILTER  
The liquid filter in the test tube is an aqueous solution of copper sulphate (II) and Orange (II) 
aniline dye. The purpose of the salt is to absorb the infrared radiation emitted by the filament. 
The filter transmittance (transmitted intensity/incident intensity) is shown in Figure F-6 
versus the wavelength.  

Task 3 

Determine λ 0 and ∆λ from Fig. F-6.  
Note: 2 ∆λ is the total width at half height and λ0 the wavelength at the maximum. 

PROPERTIES OF THE LDR 
The material which composes the LDR is non conducting in 
darkness conditions. By illuminating it some charge carriers are 
activated allowing some flow of electric current through it. In 
terms of the resistance of the LDR one can write the following 
relation 
 R bE γ−=  (7) 
where b is a constant that depends on the composition and 
geometry of the LDR and γ is a dimensionless parameter that 
measures the variation of the resistance with the illumination E 
produced by the incident  radiation. Theoretically, an ideal LDR 
would have γ = 1, however many factors intervene, so that in the 
real case γ < 1.  

It is necessary to determine γ. This is achieved by measuring a 
pair R and E (Fig. F-7) and then introducing between the lamp and 
the tube the grey filter F (Fig. F-8) whose transmittance is known 
to be 51.2 %, and we consider free of error. This produces an illu-
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mination E’ = 0.51 E. After measuring the resistance R’ corresponding to this illumination, 
we have  

( );           ' 0.512R bE R b E γγ −−= =  
From this 

 n ln 0.512
'

l R

R
γ=  (8) 

Do not carry out this procedure until arriving at part b) of task 4 below. 

Task 4 
a) Check that the LDR remained in complete darkness for at least 10 minutes before starting 

this part. Connect the battery to the potentiometer and, rotating the knob very slowly, in-
crease the lamp voltage. Read the pairs of values of V and I for V in the range between 9.50 
V and 11.50 V, and obtain the corresponding LDR resistances R. (It will be useful to make 
at least 12 readings). Translate all these values to a table in the Answer Sheet. To deal with 
the delay in the LDR response, we recommend the following procedure: Once arrived at V 
> 9.5 V, wait 10 min approximately before making the first reading. 
Then wait 5 min for the second one, and so on. Before doing any 
further calculation go to next step. 

b) Once obtained the lowest value of the resistance R, open the pro-
tecting cover, put the grey filter as indicated in F-9, cover again − as 
soon as possible − the platform and record the new LDR resistance 
R’. Using these data in (8) compute γ and ∆γ. 

c) Modify Eq. (3) to display a linear dependence of ln R on 0.83
BR− . 

Write down that equation there and label it as (9). 
d) Using now the data from a), work out a table that will serve to plot 

Eq. (9). 
e) Make the graphics plot and, knowing that c2 = hc/k, compute h and ∆h by any method (you 

are allowed to use statistical functions of the calculators provided by the organization). 
(Speed of light, c = 2.998 108 m s-1 ; Boltzmann constant, k = 1.381·10-23 J K-1) 

TASK 1 (2.0 points) 
Draw the electric connections in the boxes and between boxes below. 
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Pm 

B 

Ω 

V 

A 
P 
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Photoresistor 

Incandescent Bulb 

Potentiometer 

 

 

Red socket 

Black socket 

 
 

Ohmmeter Ω 

Voltmeter V

Ammeter A

Platform P

Potentiometer Pm

Battery B
 

TASK 2 

a) (1.0 points) 
T0 =   
 

b) (2.0 points) 
V I RB 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Vmin =                             * 

 

* This is a characteristic of your apparatus. You can´t go below it. 
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c) (2.5 points) 
V I RB 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
RB0  =   ∆ RB0  =  

 
d) (1.0 points) 

a =  ∆a =   
 

TASK 3 (1.0 points) 

λ0 =  ∆λ  =   
 

TASK 4 
a) (2.0 points) 

V I R 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

b) (1.5 points) 
R =  
 

γ  =  

R’ =  
 

∆γ  =  



Grausová, Vlachynská: Úlohy 36. Mezinárodní fyzikální olympiády 

Školská fyzika zvláštní číslo/2006 36 verze ZŠ+SŠ 

c) (1.0 points) 
 

                                Eq. (9) 
 

d) (3.0 points) 

V I  R  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

e) (3.0 points) 
h  =   
 

∆ h =  
 
 

Řešení úloh najdete na http://www.jyu.fi/ipho/. 


